4. Mitteilung¹)

Synthese von cis-2,3-Diisopropyltriaziridin-1-carbonsäureestern

von Hans Hilpert, Lienhard Hoesch²) und André S. Dreiding*

Organisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(8.VII.85)

Triaziridines. Synthesis of cis-2,3-Diisopropyltriaziridine-1-carboxylic Esters

Irradiation of the (Z)-azimines 1a, b in Et₂O with a Hg high pressure lamp through *Corex* yielded (besides 30% of the previously described *trans*-triaziridines 3a, b) 15% of the new *cis*-triaziridines 4a, b. The same irradiation of the (*E*)-azimines 2a, b afforded only 15–18% of 3a, b but 20–23% of 4a, b. Thus, these azimine photocyclizations show some stereospecificity. The triaziridines 3a, b and 4a, b formed in this way were always accompanied by the same three types of by-products, namely 10–15% of the 'triazones' 5a, b, 11-20% of the carbamic esters 6a, b, and 5-10% of the ether/nitrene insertion products 7a, b. The constitution and configuration of the new *cis*-triaziridines 4 followed from their spectral properties. Of particular interest are the symmetry properties of 4 derived from the ¹H-, ¹³C-, and ¹⁵N-NMR spectra: The stereoisomers 3 and 4 differ only in that the isochronicity of the two constitutionally equivalent molecular halves is temperature dependent in 3 but independent in 4. Both triaziridines 3 and 4 exhibit the IR CO band at (for carbamates) remarkably high frequency. The results confirm that the alkyl-substituted N-atoms of triaziridines are pyramidally stable, that the corresponding acyl-substituted N-atoms (N(1)) are also pyramidal, but can invert more readily, and that rotation around the N(1), C(=O) bond is rapid. Thus, there can be only little amide-type delocalization between a triaziridine N-atom and an acyl substituent of the carbamate type attached to it.

1. Einleitung. – Substituierte Triaziridine A sind bisher nur in Form von je einem Esterpaar von zwei 2,3-Dialkyl-triaziridin-1-carbonsäuren (A, R = Alkyl, R' = Alkoxycarbonyl) bekannt [2a]. In einem Fall B sind die beiden Alkylsubstituenten R miteinander nicht verbunden und stehen *trans* am 3-Ring, im anderen Fall C sind diese R miteinander cyclisch verbunden und stehen deshalb *cis* am 3-Ring (vgl. [2a])³). Die Existenz dieser beiden Substitutionsmuster am 3-Ring in B und C weist noch nicht unbedingt auf eine hohe Aktivierungsenergie der Inversion an N(2) und N(3) hin, da ein rasches Gleichge-

¹) 3. Mitteilung: [1].

³) Während der Fertigstellung dieses Manuskriptes sind drei weitere, miteinander nahe verwandte Triaziridin-Beispiele (partiell trifluormethyl-substituierte Derivate mit cyclisch verbundenen *cis*-Substituenten) bekannt geworden [2b].

²) Gegenwärtige Adresse: Institut für Pflanzenbiologie, Zollikerstrasse 107, CH-8008 Zürich.

wicht zwischen **B** (*trans*-ständige R) und **D** (*cis*-ständige, unverbundene R) stark auf der Seite von **B** liegen könnte und da **C** wegen Überbückung der zwei R notgedrungen *cis*-konfiguriert sein muss. Eine MO-Rechnung der unsubstituierten Triaziridine (A, R = R' = H) sagte dort eine relativ hohe Aktivierungsenergie der N-Inversion voraus [1]. Ist die Barriere der N-Inversion genügend hoch, müssten auch *cis*-Isomere vom Typ **D** isolierbar sein. Wir berichten hier über eine Synthese eines Vertreters von **D** und über eine gewisse Stereospezifität der photochemischen Azimin-Cyclisierung zu Triaziridinen.

2. Bestrahlung von (2Z)- und (2E)-2,3-Diisopropyl-azimin-1-carbonsäureestern 1 bzw. 2. – Früher haben wir trans-2,3-Diisopropyl-triaziridin-1-carbonsäureester⁴) 3 (etwa 20%) aus (2Z)-2,3-Diisopropyl-azimin-1-carbonsäureestern 1 bei der Bestrahlung mit einer Hg-Hochdrucklampe durch einen Quarzglasfilter erhalten [2a]. Seither fanden wir, dass sich die Ausbeuten an den trans-Triaziridinen 3a oder 3b auf etwa 30% erhöhen lassen, wenn eine stärker verdünnte Lösung von 1a bzw. 1b durch ein Corexglasfilter bestrahlt wird (Schema). Als wichtigstes Resultat aber haben wir seither aus einer schon früher beobachteten [2a] Mischfraktion von Nebenprodukten (s. unten) dieser Photolyse auch noch die cis-Isomeren, cis-2,3-Diisopropyl-triaziridin-1-carbonsäureester 4a bzw. 4b (je 15%) isoliert. Evidenz für die Struktur von 4a und 4b wird in Kap. 3 und 4 gegeben. Die damit bekannt gewordene Isolierbarkeit von zwei stereosjomeren Triaziridinen mit jeweils drei miteinander nicht verbundenen Substituenten, d. h. von 3 und von 4, bestätigt in eindeutiger Weise die Resistenz von mindestens zwei der Triaziridin-N-Atome gegen pyramidale Inversion (vgl. [2a]). Diese beiden N-Atome sind also bei RT. stereogene Zentren. Es muss sich dabei um die gleich-substituierten N-Atome handeln, nämlich um N(2) und N(3), welche die Alkylgruppen tragen.

⁴) Hier und schon in [2a] verwenden wir einen Stereodescriptor ohne Locanten; dies impliziert, dass N(1) in 3 und 4 kein stereogenes Zentrum ist. Ausnahmen sind hier die lediglich berechneten Strukturen 11 und 12.

Die *cis*-2,3-Dialkyl-triaziridine 4 erwiesen sich als thermisch wenig stabil, weshalb ihre Isolierung schonende Bedingungen (tiefe Temperatur und rasche Chromatographie) erfordert. In Lösung zeigten sie bereits nach 5 min bei RT. erste Anzeichen (¹H-NMR) von Umwandlungsprodukten⁵); sie sind also noch labiler als ihre *trans*-Isomeren 3.

Es stellte sich nun die Frage, ob die Cyclisierung der Azimine 1 bzw. 2 stereospezifisch sein könnte. In diesem Fall müsste aus dem (E)-Azimin 2 mehr cis-Triaziridin 4 entstehen, denn aus 1 war mehr 3 gebildet worden. Wir haben deshalb auch die (2E)-2,3-Diisopropyl-azimin-1-carbonsäureester 2a und 2b [6] unter den gleichen Bedingungen bestrahlt. Tatsächlich fanden wir dabei als Hauptprodukte die cis-Triaziridine 4a bzw. 4b (23-20%), daneben aber auch noch – in etwas geringerem Ausmass – die trans-Triaziridine 3a bzw. 3b (18-15%). Offenbar ist die relative Anordnung (trans bzw. cis) der zwei Isopropylgruppen des Eduktazimins 1 (Z) bzw. 2 (E) im jeweiligen Hauptprodukt 3 (trans, 31%) bzw. 4 (cis, 20-23%) bevorzugt erhalten geblieben. Da das jeweils anders konfigurierte Triaziridin in beiden Fällen aber ebenfalls gebildet wurde (15% 4 aus 1, 15-18% 3 aus 2), ist die Stereospezifität der Cyclisierung nur schwach; sie ist es aber doch deutlich genug, um ein vorgelagertes, photoinduziertes Gleichgewicht der steroisomeren Azimine (1 \approx 2) auszuschliessen.

Ausser den Triaziridinen 3 und 4 isolierten wir nach der Bestrahlung der beiden Azimine 1 und 2 noch jeweils drei gleiche Nebenprodukte. Es sind dies die 2-Isopropyl-3-isopropyliden-triazan-1-carbonsäureester 5a bzw. 5b (10-25%), auch 'Triazone' genannt [4], die Carbaminsäureester 6a bzw. 6b (11-20%) sowie die bereits früher [2a] aus 1a bzw. 1b (jetzt auch aus 2a bzw. 2b) photolytisch erhaltenen N-(1-Ethoxyethyl)carbaminsäureester 7a bzw. 7b (5-10%). Die 'Triazone' 5 sind vor kurzem auch bei der Thermolyse der Azimine 1 gefunden worden [4]; ihre photolytische Bildungsweise könnte der dort besprochenen thermolytischen ähnlich sein. Die Carbaminsäureester 6 und 7 dürften als Resultat der Abspaltung eines Alkoxycarbonylnitrens aus den Aziminen 1 oder 2 entstanden sein, wobei es mit Et₂O (Lösungsmittel) einerseits durch H-Übertragung (Bildung von 6, vgl. [5]) und andererseits durch Insertion in eine H-C(α)-Bindung reagiert hat (Bildung von 7, vgl. [2a]).

3. Konstitution der cis-Triaziridine 4. – Die cis-Triaziridine 4 (wie auch die trans-Triaziridine 3, vgl. [2a]) zeigen im UV (EtOH) eine Endabsorption mit $\varepsilon_{220} = 510$ (4a) und 790 (4b), IR-Carbonylbanden bei 1763 bzw. 1749 cm⁻¹ und ¹H-NMR-Methin-Signale bei 2,0–2,9 ppm. Diese Daten stehen im Einklang mit dem bei der Photocyclisierung zu erwartenden π -Konjugationsverlust, denn die Eduktazimine 1 und 2 besitzen intensive UV-Maxima bei 284–288 nm, IR-Carbonylbanden bei 1675–1683 cm⁻¹ und ¹H-NMR-Methin-Signale bei 4,1–5,6 ppm [6] (s. *Tabelle*). Die Elementaranalyse der neuen cis-Triaziridine 4 sowie die Ähnlichkeit ihrer UV-, IR-, ¹H-NMR-, ¹³C-NMR- und ¹⁵N-NMR-Spektren mit denen der bereits früher beschriebenen [2a] *trans*-Triaziridine 3 (s. *Tabelle*) belegen, dass beide die gleiche Konstitution besitzen, so dass es sich bei 4 nur um Stereoisomere von 3 handeln kann.

4. Konfiguration der cis-Triaziridine 4. – Aus den NMR-Spektren (s. Tabelle) lassen sich die folgenden Strukturmerkmale ableiten: Das Zusammenfallen der ¹H- und ¹³C-NMR-Signale für die zwei CH-Gruppen in 4 (Varianten a und b) zeigt, dass die beiden i-Pr-Gruppen dort entweder homo- oder enantiotop sind. Dass die i-Pr-CH₃-Gruppen dennoch Anlass zu zwei ¹H- und ¹³C-NMR-Signalen geben, bedeutet, dass sich die geminalen CH₃-Gruppen in beiden i-Pr-Resten in diastereotopen Lagen befinden. Homooder Enantiotopie trifft auch für N(2) und N(3) zu, denn die ¹⁵N-NMR-Signale (gemessen

⁵) Die Produkte dieser Umwandlung sind noch unbekannt und werden weiter untersucht.

	Tabelle. <i>Char</i>	akteristisch	e Spektrald	laten ^a) für den Vergle	ich zwischen den (2 Z) cis-Triazir)-Aziminen 1a , b, d idinen 4 a, b	len (2E)-Aziminen 2a ,	b, <i>den</i> trans- <i>Triaziri</i> i	tinen 3a , b und den	
Ver-	UV [nm]	IR [cm ⁻¹]	Temp. ^c)	¹ H-NMR ^d) [ppm]	¹³ C-NMR ^e) [ppm]	¹ H-NMR ^d) [ppm] ¹³ C-NMR ^e) [ppm]	¹ H-NMR ^d) [ppm]	¹⁵ N-NMR ^e) ^f)	Lit.
bin- dung		C=0	bei NMR	CH der Isopropyl	gruppen	CH ₃ der Isoprop	ylgruppen	CH ₂ der Ethoxygruppe ^b)	[ppm] N(1) N(2) N(3)	
1a, b	284	1675		5,55 (sept., 1H); 4,42 (sept., 1H)	(9,0 (d); 54,6 (d)) $(1:1)^{g}$	1,46 (<i>d</i> , 6H); 1,22 (<i>d</i> , 6H)	22,8(q); 19,1(q) $(1:1)^{g}$	4,13 (<i>q</i> , 2H)		[9]
2a, b	288	1683		4,85 (sept., 1H); 4,09 (sept., 1H)		1,56 (d, 6H); 1,35 (d, 6H)		4,20 (q, 2H)		[9]
3a, b	Endab- sorption	1749	höher	2,10 (sept., 2H)	60, 6 (d)	1,23 (d, 6H); 1,17 (d, 6H)	20,3 (<i>q</i>); 19,3 (<i>q</i>) (1:1,6)	4,30 (dq, 1H); 4,24 (dq, 1H)		[2a]
			tiefer	2,01 (sept., 1H); 2,00 (sept., 1H)	61,3 (<i>d</i>); 60,4 (<i>d</i>) (1:1)	1,26 (d, 3H); 1,15 (d, 3H) 1,23 (d, 3H); 1,23 (d, 3H); 1,14 (d, 3H)	21,5 (q); 19,2 (q); 19,4 (q); 19,4 (q); 19,1 (q) (1:1:1:1)	4,45–4,10 (m, 2H)	-224,8; -227,2; -213,4 (1:1:1)	
4a, b	Endab- sorption	1763	(₄	2,92 (sept., 2H)	50,8 (<i>d</i>)	1,34 (<i>d</i> , 6H); 1,25 (<i>d</i> , 6H)	21,3 (q); 20,0 (q) (1:1)	4,26 (q, 2H)	-235,2; -215,3 (1:2)	
(° (°	'ür vollständig bweichungen Jur für die Eth	ge Daten sc davon sind	owie für die nicht gröss 4b.	e Lösungsmittel s. <i>E</i> ser als: bei UV 1 nm,	<i>Exper. Teil.</i> Die Zahle bei IR 3 cm ⁻¹ , bei ¹ H	en stellen Durchse I-NMR 0,03 ppm	chnittswerte für die M und 1 Hz sowie bei ¹³ C	ethyl- und die Ethy -NMR 0,1 ppm.	lester a bzw. b dar	. Die
COLUMN HO	Die Temp., die "ür <i>sept.</i> und f lei mehreren S ⁵ N-NMR-Spe lier wurde nur Die ¹ H-NMR-	genügend o ür <i>d</i> ist <i>J</i> je- ignalen ist c ktren in CE ' der Ethyle: und ¹³ C-NN	berhalb bzr ca. 6 Hz; fü deren ungef XCl3 mit Cr ster 1b gem MR-Spektr	w. unterhalb der Koa ir q, J = 7 Hz; für dq ähres Höhenverhält (acac) ₃ . Es wurden n essen.	leszenz liegt, um Sign. J = (-)11 und 7 Hz nis in Klammern ange ur die Methylester 3a -40 und $+23^{\circ}$ bzw. zv	ale ausreichender S -geben. (-22°) bzw. 4a (- <i>v</i> ischen -40 und 0	schärfe beobachten zu 27°) gemessen. ° unverändert.	können, wird als höh	er bzw. tiefer bezei	shnet.

1694

an **4a** bei -27°) der zwei i-Pr-substituierten N-Atome fallen zusammen. Auch die Methylen-H-Atome der Ethoxygruppe von **4b** sind entweder homo- oder enantiotop, denn die zugehörigen ¹H-NMR-Signale entsprechen dem *A*-Teil eines A_2X_3 -Systems. Die ¹H- und ¹³C-NMR-Spektren von **4** bleiben im Bereich von -40 bis +23° bzw. -40 bis 0° unverändert.

Diese Eigenschaften der *cis*-Triaziridine **4a** und **4b** entsprechen denen ihrer (bekannten [2a]) *trans*-Isomeren **3a** bzw. **3b**, ausser dass für **4** eine Homo- oder Enantiotopie der beiden i-Pr-CH-Gruppen, von zwei N-Atomen und – im Fall von **4b** – der zwei Methylen-H-Atome über den ganzen untersuchten Temperaturbereich beobachtet wird, während für **3** bei tieferer Temperatur jedes dieser Atompaare durch Diastereotopie gekennzeichnet ist. Die Triaziridine **4** sind also (im Gegensatz zu **3**) C_s -symmetrisch, was die *cis*-Konfiguration für **4** belegt. Die oben erwähnten Stereotopien in **4** sind folglich Enantio- und nicht Homotopien.

Wie früher bei 3 [2a], stellt sich auch bei 4 die Frage nach der pyramidalen Inversion am N-Atom und der Rotation um die Amidbindung, d. h. den entsprechenden Stereogenitäten. (Rasche Rotation um andere Bindungen, d. h. um die C, N(2)-, die C, N(3)-, die CO, O- und R, O-Bindungen wird auch hier als selbstverständlich betrachtet.) Die IR-Carbonylbande von 4 liegt bei so hoher Frequenz (mit 1763 cm⁻¹ ist sie noch höher als diejenige von 3, 1749 cm⁻¹), dass auch hier Koplanarität der Amidgruppe (d. h. der Atome N(1), N(2), N(3) und der COO-Gruppe) ausgeschlossen werden darf. Die bevorzugte pyramidale Anordnung um N(1) impliziert eine relativ geringe π -Delokalisierung über die Amidgruppe und somit eine rasche Rotation um die N(1), C-Bindung. Diese rasche Rotation ergibt sich auch aus der (im gemessenen Bereich) temperaturunabhängigen Enantiotopie der i-Pr-CH-Gruppen, der Atome N(2) und N(3) und der Methylen-H-Atome von 4b, wenn angenommen werden darf, dass die Ebene der COO-Gruppe nicht orthogonal zur Ebene des 3-Ringes liegt, d. h. dass der [O=C-N(1)-N(2)]-Tor-

sionswinkel (vgl. 8 und 9) nicht nahe bei $+150^{\circ}$ bzw. bei -30° ist. Dass ein solcher Torsionswinkel der Amidgruppe – wie übrigens auch die Koplanarität dieser Gruppe – tatsächlich ausgeschlossen werden darf, wird durch die röntgenographisch in 10 festgestellte [7] sowie durch die für 11 nach MNDO berechnete [8] schiefe Lage (Torsionswinkel $O=C-N(1)-N(2) = +36^{\circ}$, s. 13, und $+56^{\circ}$, s. 14) sehr wahrscheinlich gemacht.

5. Schlussfolgerungen. – Betreffend den neuartigen N₃-Homocyclus Triaziridin können die folgenden aus der vorliegenden und früheren Arbeiten [2a] abgeleiteten Strukturaspekte zusammengefasst werden: a) Die drei Ring-N-Atome sind pyramidal. b) Die alkylsubstituierten N-Atome N(2) und N(3) sind stabil gegen Inversion, sind also stereogene Zentren. c) Die Resistenz gegen Inversion am alkoxycarbonyl-substituierten N-Atom N(1) ist zwar viel geringer, aber immer noch bemerkbar; bei RT. ist N(1) also in spektroskopischer Hinsicht kein stereogenes Zentrum, bei tieferer Temperatur ist es aber eines. d) Die Rotation um die Amidbindung N(1), C(=O) ist rasch; also ist die Amidgruppe keine stereogene Einheit. e) Die freien Elektronenpaare der Triaziridin-N-Atome stehen nur in reduziertem Mass für π -Delokalisierung zur Verfügung. Diese Strukturaspekte sind im Einklang mit den für die t-2, t-3- und c-2, t-3-Diisoopropyl-triaziridin- π -1-carbaldehyde (11 bzw. 12) nach MNDO berechneten Parametern ([8]).

Diese Arbeit wurde vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt. Wir danken auch der Firma Sandoz AG, Basel für grosszügige Forschungsbeiträge.

Experimenteller Teil

1. Allgemeines. S. [2].

2. Photocyclisierung der 2,3-Diisopropyl-azimin-1-carbonsäure-alkylester 1 und 2. 2.1. Methode. Mit N₂ durchspülte, ca. $5 \cdot 10^{-3}$ M Lsgn. von 1 bzw. 2 [6] in Et₂O wurden mit einer Hg-Hochdrucklampe (Hanau TQ 150) durch ein Corex glasfilter 45 min/mmol bei 12° bestrahlt und danach bei 10°/13 Torr eingedampft. Der Rückstand liess sich durch schnelle präp. Lobar LC (Hexan/AcOEt 9:1, nach der 3. Fraktion 6:4, 12,5 ml/min, Säule A) auftrennen. Die Fraktion des jeweiligen cis-Triaziridins 4a oder 4b und diejenige des trans-Triaziridins 3a oder 3b wurde sofort bei 10°/13 Torr eingeengt und bei -20° aufbewahrt. Die anderen Fraktionen wurden bei RT./13 Torr eingeengt und bei RT. aufbewahrt.

2.2. Cyclisierung von (2E)-2,3-Diisopropyl-azimin-1-carbonsäure-methylester (2a). Das Rohprodukt der Bestrahlung von 400 mg (2,14 mmol) 2a ergab 4 Fraktionen: Die 1. Fraktion enthielt 70,3 mg (18%) ¹H-NMR-reinen trans-2,3-Diisopropyl-triaziridin-1-carbonsäure-methylester (3a) als schwach gelbes Öl, nach ¹H-NMR identisch mit 3a aus [2a]. Die 2. Fraktion enthielt 94,8 mg (23%) zu ca. 95% reinen (¹H-NMR) cis-2,3-Diisopropyl-triaziridin-1-carbonsäure-methylester (3a) als schwach gelbes Öl, nach ¹H-NMR identisch mit 3a aus [2a]. Die 2. Fraktion enthielt 94,8 mg (23%) zu ca. 95% reinen (¹H-NMR) cis-2,3-Diisopropyl-triaziridin-1-carbonsäure-methylester (4a) als schwach gelbes Öl (Temperatur-empfindlich, d. h. nicht destillierbar). UV (EtOH): 272 (sh, 80), 240 (sh, 180), 220 (sh, 510). 1R (CHCl₃): 2980s, 2940m, 2905w, 2880m, 2850w, 1763s (C=O), 1705m, 1495w, 1470m, 1440s, 1385m, 1370m, 1320m, 1295m, 1140m, 1120m, 1100m, 1015w, 870w. ¹H-NMR (200 MHz, CDCl₃, -40°): 3,80 (s, CH₃O); 2,90 (sept., J = 6, 2(CH₃)₂CH); 1,33, 1,24 (2d, J = 6, je 6H, 2(CH₃)₂CH); beim Aufwärmen bis auf 23° blieb das ¹H-NMR während ca. 5 min unverändert, danach wurden in zunehmendem Mass neue, deutliche Signale beobachtef⁵. ¹³C-NMR (20 MHz, CDCl₃, O°): 163,3 (s, C=O); 54,3 (q, CH₃O); 50,9 (d, 2(CH₃)₂CH); 21,3, 20,1 (je q, 2(CH₃)₂CH). ¹⁵N-NMR (20 MHz, CDCl₃, Cr(acac)₃-Zusatz, -27°): -235,2, -215,3 (Intensitä ca. 1:2, N(1) bzw. N(2) und N(3)). MS (70 eV): 159 (3, $M^+ - 28$, 132 (11), 117 (10), 116 (12), 102 (16), 73 (26), 59 (41), 58 (19), 56 (16), 45 (54), 44 (20), 43 (100), 42 (42), 41 (37), 39 (20). Anal. ber. für C₈H₁₇N₃O₂ (187,25): C 51,32, H 9,15, N 22,44; gef.: C 50,94, H 9,00, N 22,14.

Die 3. Fraktion enthielt 16,0 mg (5%) ¹H-NMR-reinen N-(*1-Ethoxyethyl*)carbaminsäure-methylester (7a) als schwach gelbes Öl, nach ¹H-NMR identisch mit 7a aus [2a]. Die 4. Fraktion ergab 73,9 mg (30%) (1:2)-Gemisch von 2-Isopropyl-3-isopropyliden-triazan-1-carbonsäure-methylester (5a) und Carbaminsäure-methylester (6a) als schwach gelbes Öl, in dessen ¹H-NMR praktisch nur die Signale von 6a (Vergleich mit einer authentischen Probe) und von 5a (Vergleich mit Produkt aus [4]) erkennbar waren. Das Verhältnis 6a/5a wurde anhand des NH₂- bzw. NH-Signals bei 4,5-6,0 bzw. 6,4-6,6 ppm bestimmt.

2.3. Cyclisierung von (2E)-2,3-Diisopropyl-azimin-1-carbonsäure-ethylester (2b). Das Rohprodukt der Bestrahlung von 139 mg (0,691 mmol) 2b ergab 4 Fraktionen. Die 1. Fraktion: 20,9 mg (15%) ¹H-NMR-reiner trans-2,3-Diisopropyl-triaziridin-1-carbonsäure-ethylester (3b), schwach gelbes Öl, identisch (¹H-NMR) mit 3b aus [2a]. 2. Fraktion: 28,8 mg (20%) zu ca. 95% reiner (¹H-NMR) cis-2,3-Diisopropyl-triaziridin-1-carbonsäure-ethyl*ester* (4b), schwach gelbes Öl, Temperatur-empfindlich, nicht destillierbar. UV (EtOH): 272 (sh, 120), 232 (sh, 450), 220 (sh, 790). IR (CHCl₃): 2990s, 2940m, 2880w, 1763s (C=O), 1700m, 1470m, 1450w, 1390m, 1375m, 1300m, 1030m, 910w. ¹H-NMR (200 MHz, CDCl₃, -40°): 4,26 (*q*, *J* = 7, CH₃CH₂O); 2,94 (*sept.*, *J* = 6, 2(CH₃)₂CH); 1,35, 1,26 (2 *d*, *J* = 6, je 6H, 2(CH₃)₂CH); 1,32 (*t*, *J* = 7, CH₃CH₂O); beim Aufwärmen bis auf 23° blieb das ¹H-NMR während *ca*. 5 min unverändert; danach wurden in zunehmendem Mass neue, deutliche Signale beobachtet⁵). ¹³C-NMR (20 MHz, CDCl₃, -40°): 162,9 (*s*, C=O); 64,2 (*t*, CH₃CH₂O); 50,7 (*d*, 2(CH₃)₂CH); 21,3, 20,0, 13,9 (3 *q*, Intensität 2:2:1, 2(CH₃)₂CH, CH₃CH₂O); beim Aufwärmen bis auf 0° blieb das ¹³C-NMR während mindestens 1 h unverändert. MS (70 eV): 173 (2, *M* ⁺ –28), 146 (11), 131 (10), 98 (32), 73 (30), 58 (25), 56 (10), 45 (55), 44 (35), 43 (100), 42 (49), 41 (40), 39 (15). Anal. ber. für C₉H₁₉N₃O₂ (201,27): C 53,71, H 9,52, N 20,88; gef.: C 53,23, H 9,30, N 20,51.

3. Fraktion: 6,5 mg (6%) ¹H-NMR-reiner N-(*1-Ethoxyethyl*)carbaminsäure-ethylester (7b), schwach gelbes Öl, identisch (¹H-NMR) mit 7b aus [2a]. 4. Fraktion: 27,9 mg (28%) ca. (1:1)-Gemisch von 2-Isopropyl-3-isopropyliden-triazan-1-carbonsäure-ethylester (5b) und Carbaminsäure-ethylester (6b), schwach gelbes Öl, in dessen ¹H-NMR praktisch nur Signale von 6b (Vergleich mit einer authentischen Probe) und 5b (Vergleich mit Produkt aus [4]) erkennbar waren; das Verhältnis 6b/5b wurde anhand des NH₂- bzw. NH-Signals bei ca. 4,4-5,4 bzw. 6,3-6,7 ppm bestimmt.

2.4. Cyclisierung von (2Z)-2,3-Diisopropyl-azimin-1-carbonsäure-methylester (1a). Das Rohprodukt der Bestrahlung von 400 mg (2,14 mmol) 1a ergab 4 Fraktionen, welche nach ¹H-NMR mit den entsprechenden Produkten aus *Exper.* 2.2. identisch waren: 123,4 mg (31%) ¹H-NMR-reines 3a, 67,8 mg (15%) zu ca. 90% reines (¹H-NMR) 4a, 23,1 mg (7%) ¹H-NMR-reines 7a und 81,2 mg (27%) ca. (8:5)-Gemisch 5a/6a (alle schwach gelbe Öle).

2.5. Cyclisierung von (2Z)-2,3-Diisopropyl-azimin-1-carbonsäure-äthylester (1b). Das Rohprodukt der Bestrahlung von 430 mg (2,14 mmol) 1b ergab 4 Fraktionen, welche nach ¹H-NMR mit den entsprechenden Produkten aus *Exper. 2.3* identisch waren: 128,7 mg (30%) ¹H-NMR-reines 3b, 69,8 mg (15%) zu ca. 90% reines (¹H-NMR) 4b, 34,1 mg (10%) ¹H-NMR-reines 7b und 131,3 mg (38%) (2:1)-Gemisch 5b/6b (alle schwach gelbe Öle).

LITERATURVERZEICHNIS

- [1] M.-T. Nguyen, J. Kaneti, L. Hoesch, A.S. Dreiding, Helv. Chim. Acta 1984, 67, 1918.
- [2] a) C. Leuenberger, L. Hoesch, A.S. Dreiding, J. Chem. Soc., Chem. Commun. 1980, 1197; L. Hoesch, C. Leuenberger, H. Hilpert, A.S. Dreiding, Helv. Chim. Acta 1982, 65, 2682; b) G. Kaupp, O. Dengler, K. Burger, S. Rottegger, Angew. Chem. 1985, 97, 329.
- [3] H. Hilpert, L. Hoesch, A. S. Dreiding, in Vorbereitung.
- [4] H. Hilpert, L. Hoesch, A. S. Dreiding, Croatica Chim. Acta, in press.
- [5] W. Lwowski, R. DeMauriac, T. W. Mattingly, Jr., E. Scheiffele, Tetrahedron Lett. 1964, 3285.
- [6] C. Leuenberger, L. Hoesch, A.S. Dreiding, Helv. Chim. Acta 1982, 65, 217; korr. 1983, 66, 1009.
- [7] H. Hilpert, R. Prewo, J.H. Bieri, L. Hoesch, A.S. Dreiding, in Vorbereitung; R. Prewo, J.H. Bieri, Acta Crystallogr., Sect. A 1981, 37, (Suppl.) 09.2–24.
- [8] J. Kaneti, L. Hoesch, A.S. Dreiding, in Bearbeitung.